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Note 

A Note on Prime Factor FFT Algorithms’ 

1. INTRODUCTION 

The publication of a short paper by Cooley and Tukey [2] in 1965 led to a 
revolution in the computation of discrete Fourier transforms (DFT’s). They showed 
that if N can be decomposed into suitable small factors, then a complex DFT of 
length N can be computed in O(N log N) operations, compared with the O(N’) 
operations required in a direct implementation. In practice the computation of DFT’s 
was speeded up by one or two orders of magnitude. Many different variants of the 
algorithm were subsequently developed (see [ 111 for a unified treatment), but all with 
essentially the same operation count. 

A second revolution-at least from a theoretical point of view-resulted from the 
work of Winograd ] 121. He showed that if the factors of N were mutually prime, then 
the number of multiplications required could be greatly reduced, typically by a factor 
of 4, while the number of additions remained roughly the same. Winograd’s technique 
was a development of the algorithm due to Good ]4] for mutually prime factors, 
which in fact predated the “conventional” FFT of Cooley and Tukey. 

Kolba and Parks [ 51 reevaluated Good’s algorithm, incorporating Winograd’s 
“small-n” transforms, and pointed out that on computers where the time taken for 
addition is a significant fraction of that taken for multiplication. their modification of 
Good’s algorithm would be faster than Winograd’s technique. 

In this paper we extend the analysis of Kolba and Parks to the case of large-scale 
scientific computers such as the Cray-1 and Cyber 205. The crucial point here is not 
that they are vector machines, but that floating point additions and multiplications 
can be performed simultaneously. Consequently. in the context of the FFT algorithm. 
multiplications are “free.” and the time taken depends essentially only on the number 
of additions. We show that Good’s prime factor algorithm can be further improved in 
this case by using conventional “small-n” transforms in place of Winograd’s. It also 
emerges, however, that prime factor algorithms offer only very modest improvements 
over the conventional forms of the algorithm. On the Cray-I in particular. 
Winograd’s algorithm is likely to be slower than the conventional approach. 

2. THREE FFT ALGORITHMS 

In order to demonstrate the principles behind the various FFT algorithms 
discussed here, it will suffice to consider the case N = ~9. Let w = exp(2iz/N), and let 
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W,v be the DFT matrix of order N, with element (j, k) given by wjk where the rows 
and columns of rY, are indexed from 0 to N - 1. 

The conventional FFT algorithm is based on the factorization [ 1 I ] 

(1) 

where Wp, W, are the DFT matrices of order. p, q; Ip, 10 are the corresponding 
identity matrices; Pz is a permutation matrix, implemented in practice by the indexing 
scheme given in [ 111; D: is a diagonal matrix of complex “rotation factors;” and X 
denotes the Kronecker product. Good [4] demonstrated that if p and q are mutually 
prime, then Eq. (1) can be rewritten as 

Wp, = Wp x Wq Wp x 4) Q 
= PW, x Wc,)Q, 

(2) 

where P and Q are permutation matrices. Hence by suitable input and output 
permutations, the one-dimensional transform is mapped into a two-dimensional 
transform. In terms of operation counts the important point is that the diagonal 
matrix of rotation factors has been eliminated. Gold and Rader [ 3, Chapter 61 give a 
rather clear account of how this works. 

Winograd’s algorithm [ 121 depends on the observation that each of the “small-n” 
transform matrices W,, W, can be written in the form 

W, = B,M,A, (3) 

and similarly for rY,. Here A, and B, are matrices whose non-zero entries are all f 1, 
i.e., multiplication by these matrices requires only additions and subtractions. A4, is a 
diagonal matrix whose entries are all pure real or pure imaginary numbers. Note that 
the order of M,, may be greater than that of W,, so that A, and B, are rectangular; 
but in the algorithms given by Winograd, the order of MP is at most (p + 2). 
Winograd’s paper [ 121 concentrates on finding factorizations of the form (3) which 
minimize the order of MP, and the way in which these are combined for composite N 
is perhaps more clearly explained in papers by other authors [5? 71. 

Substituting (3) in Eq. (2), and rearranging the factors using the algebra of 
Kronecker products, we have 

W,, = W, x Bq)(Mp x 4J4, x A,) Q. (4) 

The important points here are that the “input” and “output” stages (AAp x A4) and 
(BP x B4) still consist entirely of additions and subtractions, while the matrix 
(M, x M,J is still diagonal with pure real or pure imaginary elements, and its order is 
not much greater than pq. This “nesting” technique is the key to the significant 
reduction in the number of multiplications achieved by Winograd’s algorithm. 

In extending these factorizations to more than two factors, it must be remembered 
that Eqs. (2) and (4) are only valid if all the factors of N are mutually prime. 
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3. OPERATION COUNTS 

Kolba and Parks 15 ] considered the implementation of Good’s prime factor 
algorithm, based on the use of Winograd’s small-n transforms. In comparison with 
Winograd’s procedure, this requires more multiplications but fewer additions. They 
pointed out that if the time taken for addition is a significant fraction of that taken 
for multiplication, then their procedure would be faster. 

On the Cray-1 and Cyber 205, this argument applies with greater force. (In the 
context of this discussion we can ignore the question of vectorization. for example. 
assuming that many independent transforms are to be performed in parallel.) On the 
Cray-1, independent additions and multiplications can be performed in parallel. or 
triadic operations such as a = b x (c + d) and a = b + (c :k d) can be performed in 
“chained” mode whereby the addition and multiplication are in effect carried out 
simultaneously. On the Cyber 205. there is a more restrictive “linked” mode 
analogous to chaining for triadic operations in which one of the operands is a scalar. 
All variants of the FFT algorithm require considerably more additions than 
multiplications, and it can be shown that on these machines only the number of 
additions is relevant, since all multiplications can be chained or linked with additions 
(or done in parallel on the Cray-1) and are therefore implemented free of charge 
[9, 101. (On the Cyber 205 there is a slight overhead since the vector start-up time for 
a linked add-multiply is longer than that for an addition on its own. but for 
sufftciently long vectors this can be ignored.) 

Following Kolba and Parks. it can be seen that Good’s prime factor algorithm. 
based on Winograd’s small-n transforms, should be faster than Winograd’s nested 
technique on the Cray-1 and Cyber 205 since it requires fewer additions. However. 
we can improve on this result still further by noting that Winograd’s small-n 
transforms themselves achieve the minimum number of multiplications at the expense 
of extra additions for some values of n, when compared with “conventional” small-n 
transforms. Table I compares the number of real additions and multiplications 
required in each case. 

The conventional small-n transforms for tz = 2, 3,4 are well known and can easily 
be derived by inspection. That for n = 5 is due to Rader. as quoted by Singleton 18 1. 
whose algorithm for arbitrary odd prime factors is used here for n = 7. The 
algorithms for n = 8 and rr = 16 can be built up from radix-2 or radix-4 algorithms, 
taking advantage of occasions when the rotation factor angles are multiples of n/4 
[ 11. The algorithm for n = 9 is based simply on Eq. (1) with p = q = 3. 

Kolba and Parks dismiss multiplications by 4 and $ as “shifts,” but in Table I they 
are counted as full multiplications. 

No claim is made here that these conventional algorithms actually achieve any 
theoretical minimum number of additions; it is simply to be noted that in several 
cases they require fewer additions than Winograd’s corresponding small-n transforms. 
We now compare, in Table II, the total number of real additions and multiplications 
required for a DFT of length N implemented in four different ways. The first column 
is for conventional transforms based on Eq. (1); in order to correspond as nearly as 
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TABLE I 

Number of Real Operations for Small-n Transforms 

Conventional Winograd 

Adds Mults Adds Mults 

4 0 4 0 
I2 4 I2 4 
16 0 16 0 
32 I2 34 10 
60 36 72 16 
52 4 52 4 
80 40 88 20 

144 24 148 20 

possible to mixed-radix FFT packages which actually exist [ 11] only factors 
2 < n < 7 (including n = 6) have been used. The provision of coding for n = 6 
permits some advantage to be taken of mutually prime factors, without going to the 
complexity of the full prime factor algorithms. In some cases the operation counts 
could be improved by adding n = 8, 9, 16, but these factors are not normally included 
in conventional routines. The operation counts here are derived using the formulae 
given in [ 111; other authors [5, 7, 12, 131 have also compared the operation counts 
for conventional transforms versus Winograd’s technique, but almost invariably they 
have overestimated the number of additions required in the conventional case. 

The second column is for Good’s algorithm using the conventional small-n 
transforms of Table I as advocated here, while the third column is for the same 

TABLE II 

Number of Real Additions/Multiplications for DFT’s of Length N 

N Conventional Good Kolba and Parks Winograd 

105 227211492 
108 2018/1012 
112 216211188 
120 2302/1116 
126 268411612 
128 22421900 
240 5322f2108 
252 595412500 
256 512212050 
315 849215728 
320 120213396 

1992/932 2214/590 
- 

19681744 21881396 
20281508 20161460 
245211208 21801568 

4656fl256 4812/1100 
540812416 606411136 

1516/3176 846212050 

2418/322 

23321308 
2016/276 
30681392 

- 
5016/632 
6640/184 

- 

10406/1186 
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algorithm using Winograd’s small-n transforms as suggested by Kolba and Parhs. 
The fourth column is for Winograd’s nested transform: these operation counts are 
taken from Zohar [ 131. 

Table II shows the impressive reduction in the number of multiplications required 
by Winograd’s approach in comparison with the conventional algorithm. but the 
important point here is that this is often achieved at the expense of the number of 
additions. Kolba and Parks reduce the number of additions required in comparison 
with Winograd, but the minimum number of additions is achieved in the second 
column with Good’s algorithm based on conventional small-n transforms. 

Notice, however, that the reduction in the number of additions achieved by Good’s 
algorithm compared with the conventional approach is very modest. typically only 
10% Also, some conventional operation counts are given in Table II for values of N 
such that the prime factor algorithms are not practicable. These have been included 
to demonstrate that even if we have some flexibility in the choice of N. there is not 
much to be gained from the prime factor algorithms when the cost depends only on 
the number of additions. Some authors 15, 6] have suggested .-split nesting” 
techniques in which, for example. the case N = pqrs (with all factors mutually prime) 
could be decomposed using Good’s technique into a two-dimensional ( ~9) x (~5) 
transform, and the resulting one-dimensional transforms of length pq and rs could be 
decomposed using Winograd’s technique. This would require fewer additions than the 
full nested algorithm (at the expense of extra multiplications), but it can be seen that 
using Good’s technique in full requires even fewer additions. 

4. MEMORY CONSIDERATIONS ON CRAY-1 

While the argument of the preceding section is valid as it stands on the Cyber 205. 
an important factor has been neglected in the case of the Cray-1. Before any 
arithmetic can be done on this machine, the operands must first be loaded into vector 
registers, and the eventual results must be stored back in memory. (Temporary results 
may be held in vector registers.) These transfers to and from memory can proceed in 
parallel with the arithmetic, but they must be taken into account when assessing the 
time taken for a given computation. In the context of the present discussion, if there 
are more memory transfers than additions then the time taken will depend only on the 
number of memory transfers. For example. if we compute y = W2x we load 4 real 
components of x into the registers, perform 4 real additions and store 4 real results 
back into memory. During the time taken for the total of 8 memory references. we 
could have performed 8 additions rather than only 4; the computation is said to be 
memory-bound. However, as shown in [9], n = 2 is the only example of such a small- 
tl transform which is memory-bound; in all other cases the time taken depends only 
on the number of additions, and all memory references can be overlapped with the 
arithmetic. The number of memory references (4tz) and real additions for each II is 
summarized in Table III. For the larger values of tt. additional memory references 
will in fact be required for temporary results, since only 8 vector registers are 
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TABLE III 

Number of Memory References and Real Additions on Cray-I 

Prime factor 
algorithm Input stage 

Winograd 

Output stage 

n Memory Adds Memory Adds Memory Adds 

2 8 4 8 4 8 0 
3 1” I2 12 6 I2 6 
4 16 16 16 12 16 4 

5 20 32 22 16 22 18 
7 28 60 32 34 32 38 

8 32 52 32 28 32 24 

9 36 80 40 40 40 48 

16 64 144 68 80 68 68 

provided; but in these cases the number of additions so far exceeds 4n that these extra 
memory references can be accommodated without penalty. 

In Good’s prime factor algorithm for composite N, one pass through the data is 
made for each factor n, and apart from the factor n = 2 the time dependence on the 
number of additions still holds true. (In the case of the conventional algorithm. the 
number of memory references remains the same while the number of additions 
increases, so the time still depends only on the number of additions.) 

In the case of Winograd’s algorithm, there are two passes for each factor of N, one 
during the “input” stage and another during the “output” stage. For each n, the 
partition of additions between input and output stages is given by Silverman ] 7 ] and 
reproduced in Table III. (Some of the additions can be transferred from one stage to 
the other, as in [ 131, but this does not materially affect the argument.) Also shown is 
the number of memory references, given by 2(n + p,,), where pu, is the order of the 
diagonal matrix in the decomposition given by Eq. (3). In most cases this exceeds the 
number of additions, and in the remaining cases the margin is probably always too 
small to accommodate the extra memory references needed for temporary results. 
Thus Winograd’s algorithm implemented on Cray-1 will apparently be memory- 
bound throughout, and the time taken will be significantly longer than suggested by 
the number of additions. This strengthens the conclusions of the previous section, and 
suggests that Winograd’s algorithm will be slower than a conventional transform for 
the same value of N on Cray- 1. 

5. CONCLUSIONS 

It has been shown that prime factor FFT algorithms offer little improvement over 
conventional FFT algorithms on computers such as the Cray-1 and Cyber 205 where 
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the multiplications can be performed in parallel with the additions. A very modest 
gain may be obtained by using Good’s algorithm with conventional small-r? 
transforms. Winograd’s technique, despite its impressive reduction in the number of 
multiplications, is likely to be slower than the conventional algorithm, particularly on 
the Cray-1, where memory transfers will dominate the computation. 0 
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